Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration

نویسندگان

  • Aida Rodrigo Albors
  • Akira Tazaki
  • Fabian Rost
  • Sergej Nowoshilow
  • Osvaldo Chara
  • Elly M Tanaka
چکیده

Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar cell polarity-mediated induction of neural stem cell

32 Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the 33 spinal cord. How a neural stem cell under homeostasis converts after injury to a highly 34 regenerative cell remains unknown. Here we show that during regeneration, axolotl neural stem 35 cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic 36 neuroepit...

متن کامل

CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockou...

متن کامل

O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury

Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...

متن کامل

19-P040 Molecular analysis of spinal cord regeneration in Axolotl

sue is known as transdifferentiation, in which the local cells are able to dedifferentiate (lose the characteristics of their origin) and subsequently redifferentiate. Our lab has shown by transient lineage tracing that spinal cord cells (radial glial cells) can migrate into surrounding tissues and contribute to non-neural cells during regeneration [Science 298 (2002) 1993–1996]. In order to fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015